DESIGN AND CONSTRUCTION OF ROADS, UNDERGROUNDS, AERODROMES, BRIDGES AND TRANSPORT TUNNELS
Authors:
Vladimir A. Yarmolinsky – Doctor of Sciences (Technical), professor, professor of the Department of “Construction and operation of motorways” MADI, Moscow, Russia, appolonow.vlad@yandex.ru
Ekaterina S. Budanova – postgraduate MADI, senior lecturer of the Department of “Infrastructure and Transport” YSTU, Yaroslavl, Russia, cat156026@yandex.ru
Abstract
The article discusses the issues of selecting the composition of asphalt granuloconcrete mixtures to increase the efficiency of cold regeneration of road structures. A set of studies was carried out that made it possible to determine the optimal compositions of asphalt granuloconcrete, taking into account their strengthening with various types of binders in the conditions of subzone II1. A complex of laboratory studies of asphalt granuloconcrete samples was carried out and an assessment was made of the influence of the main factors influencing its physical and mechanical characteristics based on experimental planning. It has been established that the type of binder significantly affects the physical, mechanical and hydrophysical properties of materials. Samples based on complex binders have high water resistance and strength. The use of only bitumen emulsion as a binder does not ensure the formation of materials with the necessary strength and water resistance. Recommendations are given for designing the compositions of asphalt granuloconcrete mixtures to increase the efficiency of cold regeneration under conditions of excess moisture.
Keywords: automobile road, service life, cold recycling, road construction, asphalt granuloconcrete mixture, structure formation, excessive moisture, mathematical modeling
References
- Yarmolinskiy V.A., Budanova E.S. Nauka i tekhnika v dorozhnoj otrasli, 2023, no. 3, pp. 21-23.
- Dolinskij Ya.A. Arhitekturno-stroitel'nyj i dorozhno-transportnyj kompleksy: problemy, perspektivy, innovacii, Sbornik materialov, Omsk, SibADI, 2019, pp. 370-375.
- Rahimov A.M., Sirotyuk V.V. Obrazovanie. Transport. Innovacii. Stroitel'stvo, Sbornik materialov, Omsk, SibADI, 2019, pp. 325-329.
- Borisenko Yu.G., Shiryaev A.V., Kornienko V.V. Nauchnyj Al'manah associacii France-Kazakhstan, 2023, no. 4, pp. 16-23.
- Yarmolinskiy V.A., Budanova E.S. Nauka i tekhnika v dorozhnoj otrasli, 2022, no. 3, pp. 20-23.
- Budanova E.S., Yarmolinskiy V.A., Borisov A.S., Kuchinov N.S. Umnye kompozity v stroitel'stve, 2024, vol. 5. no. 1, pp. 31-42.
- Emel'yanycheva E.A., Abdullin A.I. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2013, vol. 16, no. 3, pp. 198-204.
- Guba V.V., Guba K.R. Aktual'nye problemy avtotransportnogo kompleksa, Sbornik nauchnyh statej, Samara, Samara State Technical University, 2019, pp. 180-185.
- Kuleshov A.V. Sinergiya Nauk, 2019, no. 31, pp. 699-725.
- Artem'eva L.A., Dudin V.M. Sem'desyat tret'ya vserossijskaya nauchno-tekhnicheskaya konferenciya studentov, magistrantov i aspirantov vysshih uchebnyh zavedenij s mezhdunarodnym uchastiem. Sbornik materialov, Yaroslavl, Yaroslavl State Technical University, 2020, pp. 632-636.
- Bahrah G.S. Mir dorog, 2021, no. 140, pp. 70-71.
- Bahrah G.S. Mir dorog, 2021, no. 137, pp. 102-104.
- Shaburov S.S., Ulasovich R.P. Izvestiya vuzov. Investicii. Stroitel'stvo. Nedvizhimost', 2015, no. 2(13), pp. 112-118.
- Shchurin K.V., Kosyh D.A. Metodika i praktika planirovaniya i organizacii eksperimenta (Methodology and practice of planning and organizing an experiment), Orenburg, Orenburg State University, 2012, 185 p. ISBN 978-5-4417-0131-0.
GROUND TRANSPORT AND TECHNOLOGICAL MEANS AND COMPLEXES
Authors:
Alexander O. Dvoryankin – postgraduate MADI, Moscow, Russia, alol113@yandex.ru
Natalia I. Baurova – Doctor of Sciences (Technical), Professor, Dean of the Faculty of Road and Technological Machines MADI, Moscow, Russia, nbaurova@mail.ru, https://orcid.org/0000-0001-9529-2031
Abstract
The main features of the technology of manufacturing parts of lifting and transport machines by casting on smelted models using master models made using FDM 3D printing technology from ABS-plastic are analyzed. The features are reflected in detail, and recommendations have been developed that must be considered when manufacturing parts of lifting and transport machines using the proposed technology. It is shown that the high-quality stages of creating master models and silicone molds can reduce the complexity of manufacturing subsequent parts by excluding these stages from the technological process. A technical and economic assessment of the effectiveness of the developed technology has been carried out, using the example of the manufacture of a gear wheel of a rotary support device of the Galichanin KS-4572 truck crane, it is shown that the cost of the proposed technology exceeds the cost of traditional technologies and the technology of pouring into 3D sand molds, but at the same time lower than the technology of casting according to smelted models using SLA technology and technology of casting according to burnt models using Quick Cast technology. It is also determined that with an increase in production volumes, the cost of manufacturing the part decreases since the used master models and silicone molds, with prolonged use, do not lose their original properties.
Keywords: casting, 3D printing, FDM technology, CAD programs, silicone molds, wax models, labor intensity, cost
References
- Korbanov V.D. Litejnoe proizvodstvo, 2021, no. 8, pp. 21-22.
- Sankin R.V., Palachev V.A. Litejnoe proizvodstvo, 2023, no. 11, pp. 29-30.
- Chernov D.S., Matveev A.V., Nesterov S.A., Sorokina N.V. Tendencii razvitiya nauki i obrazovaniya, 2020, no. 63-2, pp. 39-43, doi 10.18411/lj-07-2020-30.
- Barinov A.Yu., Dyachkov V.N., Nikitin K.V., Tukabajov B.N., Borodin B.N. Litejchik Rossii, 2018, no. 8, pp. 14-19.
- Dvoryankin A.O., Baurova N.I. Vestnik MADI, 2023, no. 4(75), pp. 67-64.
- Dvoryankin A.O., Baurova N.I. Tekhnologia metallov, 2021, no. 9, pp. 17-21, doi 10.31044/1684-2499-2021-0-9-17-21.
- Dolgolenko I.S., Nefelov I.S., Konoplin A.Yu. Remont. Vosstanovlenie. Modernizaciya, 2023, no. 3, pp. 27-31, doi 10.31044/1684-2561-2023-0-3-27-31.
- Kostina E.S. Mezhdunarodny`j akademicheskij vestnik, 2019, no. 10(42), pp. 99-102.
- Sadoxa, M.A., Rovin S.L. Lit`e i metallurgiya, 2020, no. 3, pp. 10-14, doi 10.21122/1683-6065-2020-3-10-14.
- Tignibidin A.V., Takayuk S.V. Dinamika sistem, mexanizmov i mashin, 2018, vol. 6, no. 2, pp. 57-65, doi 10.25206/2310-9793-2018-6-2-57-65.
- Nefelov I.S., Tomilina A.A. Remont. Vosstanovlenie. Modernizaciya, 2022, no. 1, pp.8-11, doi 10.31044/1684-2561-2022-0-1-8-11.
Authors:
Irina V. Odinokova – Candidate of Sciences (Technical), Associate Professor of the Department of «Machinery Parts and Theory of Mechanisms» MADI, Moscow, Russia, odinokova_iv@mail.ru, https://orcid.org/0009-0006-37-7435
Jalal Mohammad – postgraduate of the Department of «Machinery Parts and Theory of Mechanisms» MADI, Moscow, Russia, galaloomohamad83@gmail.com
Vitaly V. Gaevskiy – Doctor of Sciences (Technical), Professor of the Department of «Automobiles» MADI, Moscow, Russia, vit-life@rambler.ru
Sergei A. Gorbunov – Postgraduate of the Department of «Machinery Parts and Theory of Mechanisms» MADI, Moscow, Russia, sergeygorbunov756@gmail.ru
Daniil A. Fedulov – undergraduate of the Department of «Machinery Parts and Theory of Mechanisms» MADI, Moscow, Russia, feda8851@gmail.com
Abstract
This article presents a method for designing components of hydraulic excavators with high reliability and minimal metal consumption. It is proposed to determine the design loads in the presence of uncertainty in soil properties. The distribution of values for uncertain loads is determined using the Monte Carlo method based on the existing soil cutting model (McKyes), where soil parameters are treated as variables. Design loads used in the design/optimization process are assessed using the 3-sigma methodology. These loads are used to calculate the reaction forces in the joints of the excavator's working equipment elements using a dynamic model built with MATLAB based on the kinematic model of the working equipment during the digging process. A 3-D geometric model of the working equipment elements is created in SpaceClaim 2019. The thickness of the element plates and the thickness of the lugs are selected as design variables for the optimization. In the ANSYS, an optimization model is formulated to reduce the mass of the element and decrease the maximum stresses that occur in it. An interactive link is established between MATLAB and ANSYS programs to execute the optimization process for the elements. Thus, the application of the proposed method for designing elements of working equipment under uncertain loads allows achieving a good compromise between the element's mass and the maximum stresses that may occur in the element.
Keywords: excavator working equipment, uncertain loads, Monte Carlo method, development of optimization techniques, modeling the uncertainty of soil digging resistance
References
- Mahmudov Sh. A., Kayumov U. E., Pardaeva Sh. S. Universum: tekhnicheskie nauki, 2022, no. 5(98), pp. 52-58, doi 10.32743/UniTech.2022.98.5.13582.
- Kuleshov A. V., Slepchenko V. A., Slepchenko I. V. Vestnik Tomskogo gosudarstvennogo arhitekturno-stroitel'nogo universiteta, 2017, no. 2(61), pp. 204-210.
- Zotov O. A., Gustov D. Yu. Vestnik MGSU, 2019, vol. 14, no. 3(126), pp. 376-385, doi 10.22227/1997-0935.2019.3.376-385.
- Minin V. V., Dmitriev V. A., Butrim K. N. Mekhaniki XXI veku, 2023, no. 22, pp. 70-75.
- Bezkorovajnyj P. G., SHestakov V. S. Izvestiya vysshih uchebnyh zavedenij. Gornyj zhurnal, 2023, no. 1, pp. 25-35, doi 10.21440/0536-1028-2023-1-25-35.
- Maury H., Wilches J., Illera D., Pugliese V., Mesa J., Gómez H. Failure assessment of a weld-cracked mining excavator boom, Engineering Failure Analysis, 2018, vol. 90, pp. 47-63, doi 10.1016/j.engfailanal.2018.03.022.
- Bošnjak S. M. Comments on "design of aluminium boom and arm for an excavator", Journal of Terramechanics, 2011, vol. 48, no. 6, pp. 459-462, doi 10.1016/j.jterra.2011.09.001.
- Mohammad Zh. M., Odinokova I. V., Sidorenko T. A., Mohammad D. A. Stroitelnye i dorozhnye mashiny, 2020, no. 7, pp. 14-19.
- Odinokova I. V., Mohammad Zh. M. Materialy konferencii «Nauka i tekhnika v dorozhnoj otrasli», Moskva, MADI, 2021, pp. 13-15.
- Kim J. W., Jung S., Kim J., Kim J., Seo T. Optimal design of the front linkage of a hydraulic excavator for multi-objective function, Journal of Mechanical Science and Technology, 2014, vol. 28, no. 8, pp. 3103-3111, doi 10.1007/s12206-014-0718-x.
- Blouin S., Hemami A., Lipsett M. Review of resistive force models for earthmoving processes, Journal of Aerospace Engineering, 2001, vol. 14, no. 3, pp. 102-111, doi 10.1061/(ASCE)0893-1321(2001)14:3(102).
- Awuah-Offei, K., Frimpong, S. Efficient Cable Shovel Excavation in Surface Mines, Geotechnical and Geological Engineering, 2011, vol. 29, no. 1, pp. 19-26, doi 10.1007/s10706-010-9366-9.
- Pavlov V. P. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta, 2011, vol. 7, no. 1, pp. 185-188.
- Demidenko A. I., Kuznecov I. S. Izvestiya vysshih uchebnyh zavedenij. Gornyj zhurnal, 2022, no. 3, pp. 32-43, doi 10.21440/0536-1028-2022-3-32-43.
- Ivanenko M. B., Ananin V. G., Slepchenko V. A. Vestnik Tomskogo gosudarstvennogo arhitekturno-stroitel'nogo universiteta, 2016, no. 3(56), pp. 205-210.
- Mohammad ZH. M., Odinokova I. V., Nefedkin A. I., Dzhaful A. M. Stroitelnye i dorozhnye mashiny, 2022, no. 4, pp. 17-21.
TRANSPORT AND TRANSPORT-TECHNOLOGICAL SYSTEMS OF THE COUNTRY, ORGANIZATION OF PRODUCTION IN TRANSPORT
Authors:
Igor E. Agureev – Doctor of Sciences (Technical), Professor of the Department of “Transport and technological machines and processes”, TulSU, Tula, Russia, agureev-igor@yandex.ru
Roman N. Hmelev – Doctor of Sciences (Technical), Professor of the Department of “Transport and technological machines and processes”, TulSU, Tula, Russia, hrn@yandex.ru
Yuri V. Fedyukin – Deputy head of the institution, Federal State Institution "Roads of Russia", Moscow, Russia, fedukin@list.ru
Abstract
The article presents a generalized model of a transport system with control in the form of a variety of technical means of organizing traffic. The model was developed on the basis of the theory of transport macrosystems, an analogue of which abroad is called the “theory of urban systems”. Theoretical methods make it possible to use the entropy approach of states and the concepts of “capacity of states” and “a priori probabilities” when searching for equilibrium states, which are used to calculate the distribution of road users among transport system objects. When assessing the effectiveness of intelligent transport systems, it is assumed that the implemented technical means influence the redistribution of traffic flows due to local changes in traffic intensity, throughput and capacity of sections of the road network, parking space, and other elements of transport systems. The proposed model takes into account changes in the a priori probabilities of finding vehicles in the network and creates opportunities for calculating the states of the transport system before and after the implementation of measures for the implementation of an intelligent transport system and allows, within the framework of a numerical implementation, to perform a computational experiment to predict the effectiveness of measures for the implementation of intelligent transport systems.
Keywords: intelligent transport system, mathematical model, model of stationary states of the system, calculation of the effectiveness of measures
References
- Miheeva T. I. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika S.P. Korolyova, 2004, no. 2(6), pp. 118-126.
- Demin V. A. Vestnik grazhdanskih inzhenerov, 2019, no. 1(72), pp. 146-151, doi 10.23968/1999-5571-2019-16-1-146-151.
- Orolev S.I., Stoyan M.V., Terent'ev V.V., Martynushkin A.B., Andreev K.P., Derr E.S. Transportnoe delo Rossii, 2020, no. 4, pp. 57-59.
- Solodkij A. I. Intellekt. Innovacii. Investicii, 2020, no. 6, pp. 10-19, doi 10.25198/2077-7175-2020-6-10.
- Kadasev D. A., Voronin N. V. Materialy II Vserossijskoj nauchnoj konferencii s mezhdunarodnym uchastiem. “Informacionnye tekhnologii v modelirovanii i upravlenii: podhody, metody, resheniya”, Tolyatti, Izdatel' Kachalin Aleksandr Vasil'evich, 2019, vol. 2, pp. 110-116.
- Zhankaziev S. V., Vorob'ev A. I., Gavrilyuk M. V. Transport Rossijskoj Federacii, 2021, no. 1-2(92-93), pp. 3-6.
- Fedyukin Yu.V., Minakov E.I., Agureev I.E., Hazov N.I., Chajkovskij V.M. Nadezhnost' i kachestvo slozhnyh system, 2023, no. 4(44), pp. 77-87, doi 10.21685/2307-4205-2023-4-7.
- Kapitanov V. T., Chubukov A. B. Mir transporta i tekhnologicheskih mashin, 2015, no. 2(49), pp. 117-123.
- Levin B. A., Rozenberg I. N., Cvetkov V. Ya. Nauka i tekhnologii zheleznyh dorog, 2017, vol. 1, no. 3(3), pp. 3-15.
- Grechushkin I. V., Prutchikov I. O., Repin A. V. Robototekhnika i tekhnicheskaya kibernetika, 2021, vol. 9, no. 3, pp. 207-213, doi 10.31776/RTCJ.9306.
- Glagolev S. N., Novikov I. A., Kushchenko L. E., Koroleva L. A. Mir transporta i tekhnologicheskih mashin, 2023, no. 1-1(80), pp. 68-75, doi 10.33979/2073-7432-2023-1(80)-1-68-75.
- Zhakov V. V., Zejnalova G. A. Nacional'naya Associaciya Uchenyh, 2022, no. 80, pp. 45-49, doi 10.31618/NAS.2413-5291.2022.1.80.598.
- Golovnin O. K., Imamutdinov A. N. Information Technologies for Intelligent Decision, Ufa, USATU, 2016, vol. 1, pp. 133-138.
Authors:
Vadim Valerianovich Donchenko – Candidate of Sciences (Technical), Senior researcher, associate professor of JSC “NIIAT”, Moscow, Russia, v.v.donchenko@yandex.ru
Sergey Aleksandrovich Andreev – postgraduate of JSC “NIIAT”, Moscow, Russia, andreevsa@niiat.ru
Abstract
The multidimensional nature of urban transport, the need to ensure the processes of urban development with minimization of external effects indicates the need to take into account in the formation and implementation of urban transport policy solutions that ensure the interrelation of mobility, accessibility of travel goals and the quality of transport services provided to passengers. In this regard, the article considers aspects of the formation of a model that links the achievability of travel goals with the quality of services of a multimodal transport chain. It is based on accessibility as a complex factor that objectively and logically affects the transportation demand. The impact on accessibility indicators and linking the provided quality of transport services with the level of this quality expected by the passenger contributes to the redistribution of transport demand by increasing the demand for urban passenger transport services in the total volume of urban mobility.
Keywords: urban transport systems, public passenger transport, quality of transport services, evaluation methods
References
- Trofimenko Yu. V., Komkov V. I. Vestnik SibADI, 2023, vol. 20, no. 3(91), pp. 350-361, doi 10.26518/2071-7296-2023-20-3-350-361.
- Trofimenko Y., Komkov V., Donchenko V. Problems and prospects of sustainable low carbon development of transport in Russia, IOP Conference Series: Earth and Environmental Science, 2018, vol. 177, р. 012014, doi 10.1088/1755-1315/177/1/012014.
- Spirin I. V., Grishaeva Yu. M., Glazachev S. N., Savosina M. I., Shumilov Yu.V. Astrahanskij vestnik ekologicheskogo obrazovaniya, 2019, no. 6(54), pp. 75-85.
- Trofimenko Yu. V. Problems and prospects of decarbonization of road transport in the Russian Federation, BRICS Transport, 2023, vol. 2, no. 4, doi 10.46684/2023.4.1.
- Yakimov M., Trofimenko Y. Developing an urban public passenger transport route network with account for natural resource limitations, Transportation Research Procedia, 2018, vol. 36, pp. 801-809, doi 10.1016/j.trpro.2018.12.078.
- Yakimov M. R., Putin A. A., Nesterova A. S. Transport Urala, 2021, no. 2(69), pp. 17-21, doi 10.20291/1815-9400-2021-2-17-21.
- Vuchic V. Тransport v gorodah, udobnyh dlya zhizni (Transport in livable cities), Moscow, ID Territoriya buduschego, 2011, 576 р. ISBN 978-5-91129-058-0.
- Yakimov M. R., Trofimenko Yu. V. Transportnoe planirovanie: formirovanie effektivnyh transportnyh sistem krupnyh gorodov (Transport planning: building efficient urban transport systems), 2 ed., Perm, Agentstvo Radar, 2022, 536 p. ISBN 978-5-6048401-0-8.
- Asaliev A. M., Zaviyalova N. B., Saginova O. V., Spirin I. V., Skorobogatyh I. I., Sidorchuk R. R., Musatov B. V., Meshkov A. A., Gorelova T. P., Diyakonova L. P., Efimova D. M., Zaviyalov D. V., Kaderova V.A., Lopatinskaya I. V., Markin I. M., Murtuzalieva T. V., Saginov Yu. L., Tverdohlebova M. D., Sharova I. V., Bagliev T. K. Marketingovyi podhod k upravleniyu kachestvom transportnogo obsluzhivaniya (Marketing approach to transportation service quality management), Novosibirsk, Center nauchnogo sotrudnichestva, 2016, 172 p. ISBN 978-5-00068-521-1.
- Spirin I. V. Mir transporta, 2020, vol. 18, no. 3(88), pp. 28-43, DOI 10.30932/1992-3252-2020-18-28-43.
- Polyakov A. S., Zhankaziev S. V. Nauka I tekhnika v dorozhnoi otrasli, 2016, no. 4(78), pp. 3-6.
- Donchenko V. V. Avtomobil’. Doroga. Infrastruktura, 2023, no. 1(35), pp. 1-13.
- Spirin I. V., Belyaev V. M. Mir transporta, 2018, vol. 16, no. 5(78), pp. 26-38.
- Donchenko V. V. Nauchnyj vestnik avtomobil'nogo transporta, 2022, no. 3, pp. 5-13.
- Saginova O. V., Spirin I. V., Zaviyalova N. B., Sidorchuk R. R. MIR (Modernizatsiya. Innovatsii. Razvitie), 2016, vol. 7, no. 2(26), pp. 28-37, doi 10.18184/2079-4665.2016.7.2.28.37.
- Gorev A. E. Transport Rossijskoy Federacii, 2016, no. 6(67), pp. 50-53.
- Yakimov M. R. Intellect. Innovatsii. Investicii, 2019, no. 8, pp. 10-18, doi 10.25198/2077-7175-2019-8-10.
Authors:
Alexander V. Martynenko – Candidate of Sciences (Physical and Mathematical), Associate Professor, Head of the scientific research laboratory “Transport Modeling” USURT; Senior researcher IE UB RAS, Yekaterinburg, Russia, AMartynenko@usurt.ru, https://orcid.org/0000-0002-4701-6398
Denis Zh. Saifutdinov – postgraduate of the Department of “Natural Sciences” USURT, Yekaterinburg, Russia, densssovv@yandex.ru, https://orcid.org/0000-0003-1684-0015
Abstract
Payment and navigation systems of urban public transport are a source of data on the basis of which it is possible to obtain complete information about the spatial distribution of passenger flows and calculate the values of various transport performance indicators. As a rule, payment and navigation systems operate independently (services are provided by different operators and the technical devices that ensure the functioning of these systems do not interact with each other), and the connection between them is reflected in dispatch information about the distribution of conductors with payment validators among vehicles. Due to various circumstances, some conductors may serve vehicles that are completely different from those indicated in the data received from dispatchers. Accordingly, information about the distribution of validators will contain errors, which, in turn, will reduce the accuracy of the results obtained from payment and navigation data. This paper proposes an approach to checking data on the distribution of payment validators among vehicles based on a comparison of the daily activity of validators and geotrackers. It is shown that such a check can be reduced to the problem of optimal assignment, where various similarity measures for the specified daily activities are used as the costs of performing work. The proposed approach was applied to checking data from the payment and navigation systems of Yekaterinburg.
Keywords: payment system, navigation system, urban public transport, passenger flows, digitalization of transport
References
- Petrova D.V. International journal of open information technologies, 2020, vol. 8, no 1, pp. 47-57.
- Kovalev A.M., Egorov K.V., Sanzhapov P.P., Prytkova E.G. Tekhniko-tekhnologicheskiye problemy servisa, 2021, no. 4(58), pp. 12-18.
- Cui A. Bus passenger origin-destination matrix estimation using automated data collection systems, M.S. thesis, Massachusetts institute of technology. dept. of civil and environmental engineering, 2006, 133 p.
- Zhao J., Rahbee A., Wilson N. H. M. Estimating a Rail Passenger Trip Origin-Destination Matrix Using Automatic Data Collection Systems, Computer-Aided Civil and Infrastructure Engineering, 2007, vol. 22(5), pp. 376-387, doi 10.1111/j.1467-8667.2007.00494.x.
- Munizaga M.A., Palma C. Estimation of a disaggregate multimodal public transport Origin–Destination matrix from passive smartcard data from Santiago, Chile, Transportation Research Part C: Emerging Technologies, 2012, vol. 24, pp. 9-18, doi 10.1016/j.trc.2012.01.007.
- Barry J.J., Newhouser R., Rahbee A., Sayeda S. Origin and Destination Estimation in New York City with Automated Fare System Data, Transportation Research Record: Journal of the Transportation Research Board, 2002, vol. 1817(1), pp.183-187, doi 10.3141/1817-24.
- Barry J.J., Freimer R., Slavin H. Use of Entry-Only Automatic Fare Collection Data to Estimate Linked Transit Trips in New York City, Transportation Research Record: Journal of the Transportation Research Board, 2009, vol. 2112(1), pp. 53-61, doi 10.3141/2112-07.
- Gordon J.B., Koutsopoulos H.N., Wilson N.Y.M., Attanucci J.P. Automated Inference of Linked Transit Journeys in London Using Fare-Transaction and Vehicle Location Data, Transportation Research Record: Journal of the Transportation Research Board, 2013, vol. 2343(1), pp. 17-24, doi 10.3141/2343-0.
- Hora J., Diasa T.G., Camanhoa A., Sobral T. Estimation of origin-destination matrices under automatic fare collection: the case study of Porto transportation system, Transportation research procedia, 2017, vol. 27, pp. 664-671, doi 10.1016/j.trpro.2017.12.103.
- Fadeev A.I., Alhusseini S. Vestnik sibirskogo gosudarstvennogo avtomobil'no-dorozhnogo universiteta, 2022, vol. 19, no 3(85), pp. 370-397, doi 10.26518/2071-7296-2022-19-3-370-397.
- Fadeev A.I., Alhusseini S. Vestnik sibirskogo gosudarstvennogo avtomobil'no-dorozhnogo universiteta, 2021, vol. 18, no. 1(77), pp. 52-71, doi 10.26518/2071-7296-2021-18-1-52-71.
- Medvedeva O. A. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaya matematika. Informatika. Processy upravleniya, 2013, no. 1, pp. 85-94.
- Lelyakova L.V., Kharitonova A.G., Chernyshova G.D. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: sistemnyy analiz i informatsionnyye tekhnologii, 2017, no. 2, pp. 22-27.
- Bebishev M.A., Korchevskaya O.V., Borisov A.S., Akinfeev R.S., Voronov M.N. Khvoynyye boreal'noy zony, 2012, vol. 30, no. 5-6, pp. 97-102.
- Gasnikov A.V. Sovremennyye chislennyye metody optimizatsii. Metod universal'nogo gradiyentnogo spuska (Modern numerical optimization methods. Universal gradient descent method), 2 ed., Moscow, Moskovskiy fiziko-tekhnicheskiy institut, 2018, 291 p. ISBN 978-5-7417-0667-1.
AUTOMOBILE TRANSPORT OPERATION
Authors:
Ekaterina P. Parlyuk – Doctor of Sciences (Technical), Professor of the Department of Wheeled Vehicles, BMSTU, Moscow, Russia, Parlyuk@bmstu.ru
Viktor I. Karagodin – Doctor of Sciences (Technical), Professor of the Department of Road Building Machines MADI, Moscow, Russia, bik250248@yandex.ru
Aleksey A. Solntsev – Candidate of Sciences (Technical), Associate Professor, Head of the Department of Operation and servicing of motor vehicles MADI, Moscow, Russia, solntsev@madi.ru
Lev L. Zimanov – Candidate of Sciences (Technical), Associate professor of the Department of Operation of Motor Transport and Car Service MADI, Moscow, Russia, zimanov@madi.ru
Abstract
Over the past decade, electric vehicles have rapidly become a technology center, as they can reduce the consumption of fossil fuels and the negative impact of cars with internal combustion engines on the environment. The most important components of electric vehicles are the traction battery and its associated cooling system. Temperature is considered an important indicator affecting the capacity of traction batteries (TB) of electric vehicles. Therefore, it is very important to study the relationship between the capacity and the temperature of the TB. Battery operation in modes other than recommended by the manufacturer significantly reduces the battery life. The widespread use of accumulator batteries in electric vehicles, cargo and passenger transport resulted in a need to deal with the challenges related to rational and efficient ways of charging them, as well as compliance with temperature and performance indicators. TBs are developing in the direction of high energy density and power. At the same time, the heat dissipation capacity increases with increasing battery volume, and thus the unevenness of the surface temperature of an individual battery becomes more significant. This article discusses the main approaches and methods of studying the life of TB electric vehicles, analyzes the causes of degradation and identifies the processes occurring in the TB during charging/discharging. The main factors affecting the service life of the TB are identified: charging and discharging currents, temperature, number of cycles, degree of discharge, operating range of the charge level.
Keywords: heat flow, thermal control, temperature, battery, capacity, discharge, charge, cooling system, current, electric vehicle
References
- Malinin N.N. Prikladnaya teoriya plastichnosti i polzuchesti (Applied theory of plasticity and creep), 2 ed., Moscow, Mashinostroenie, 1975, 400 p.
- Afanasyev B.A., Bocharov N.F., Zheglov L.V., Zuzov V.N., Polungyan A.A., Fomin A.B., Tsybin V.S. Proyektirovaniye polnoprivodnykh kolesnykh mashin (Designing four-wheel drive wheeled vehicles), Moscow, Bauman Moscow State Technical University, 1999, vol. 1, 488 p. ISBN 5-7038-1336-0.
- Terentiev, E. E., Blyankinshtein, I. M. Intellekt. In-novatsii. Investitsii, 2023, no. 1, pp. 112-124, doi 10.25198/2077-7175-2023-1-112.
- Savich E. L., Gursky A.S., Smolskaya V.S. Istochniki pitaniya elektromobiley (Power supplies for electric vehicles), Minsk, BNTU, 2023, 65 p.
- Skundin A.M., Kulova T.L., Grigorieva O.Y. Litiy-ionnyye akkumulyatory (Lithium-ion batteries), Moscow, Izdatel'stvo MEI, 2022, 100 p. ISBN 978-5-7046-2634-3.
- Voroshilov A.N., Petrov A.N., Chudinov E.A. Novosti elektrotekhniki, 2017, no. 2(104)-3(105), pp. 44-49.
- Zaharov N.S., Sapozhenkov N.O. Sovremennyye tekhnologii. Sistemnyy analiz. Modelirovaniye, 2016, no. 3(51), pp. 232-237.
- Tyshkevich L.N., Zhuravskij B.V. Vestnik Sibirskogo gosudarstvennogo avtomobil'no-dorozhnogo universiteta, 2017, no. 6(58), pp. 71-77.
- Stroganov V.I., Kozlovsky V.N. Modelirovaniye sistem elektromobiley i avtomobiley s kombinirovannoy silovoy ustanovkoy v protsessakh proyektirovaniya i proizvodstva (Modeling of systems of electric vehicles and cars with a combined power plant in the processes of design and production), Moscow, MADI, 2014, 264 p. – ISBN 978-5-7962-0151-0
- Yutt V.E., Stroganov V.I. Elektromobili i avtomobili s kombinirovannoy energoustanovkoy. Raschet skorostnykh kharakteristik (Electric vehicles and cars with a combined power plant. Calculation of speed characteristics), Moscow, MADI, 2016, 108 p.
- Yutt V.E. Elektrooborudovaniye avtomobiley i elektromobiley (Electrical equipment of cars and electric vehicles), Moscow, Goryachaya liniya-Telekom, 2019, 480 p. ISBN 978-5-9912-0730-0.
Authors:
Alexander T. Kulakov – Doctor of Sciences (Technical), Professor of the Department of Motor Transport Operation, Kazan Federal University - Naberezhnye Chelny Institute, Naberezhnye Chelny, Russia, ATKulakov@kpfu.ru, https://orcid.org/0000-0002-6443-0136
Viktor I. Karagodin – Doctor of Sciences (Technical), Professor of the Department of Road Building Machines MADI, Moscow, Russia, bik250248@yandex.ru, https://orcid.org/0009-0005-8220-9928
Irina A. Yakubovich – Doctor of Sciences (Technical), Professor of the Department of Operation and servicing of motor vehicles MADI, Moscow, Russia, i.a. iakubovich@mail.ru, https://orcid.org/0000-0002-9864-0713
Abstract
The fuel efficiency of the vehicle, its environmental friendliness and traction and speed properties are determined by the performance of the turbocharging system of the engine, the most important component of which is the turbocharger. Failures and malfunctions of turbochargers of forced automobile and tractor internal combustion engines lead to downtime of automobile and agricultural machinery. Research on reliability of turbochargers produced by the engine plant of PJSC KAMAZ revealed the expediency of modernization of the bearing unit on the TKR7H-1 used in KAMAZ 740.11-240 automobile engines. The issue of modernization of turbocharger is especially relevant in connection with its operation due to low durability, high cost and labor-intensive repairs. In the research carried out by the authors of the article the interrelation of lubrication and cooling conditions of TKR7H-1 with supercharging parameters and characteristics of internal combustion engine is established. The features of TKR with modernized bearing unit are considered. The technology of modernization of the bearing unit by installation of the improved repair kit of turbochargers with modification of the sleeve and bearing housing is developed. The results of experimental studies of turbochargers with upgraded bearing unit are analyzed. The economic efficiency of modernization with application of the improved repair kit at repair of TKR7N-1 is estimated. The proposed technology of turbocharger repair using the repair kit has been successfully applied at a number of enterprises of Tatarstan and Bashkortostan.
Keywords: internal combustion engine, turbocharger, turbocharger reliability improvement, typical turbocharger faults, modernized turbocharger bearing unit
References
- Miftakhov T. M., Miftakhov M. N. Vestnik Orenburgskogo gosudarstvennogo universiteta, 2014, no. 10(171), pp. 135-139.
- Gaffarov A. G. Vosstanovlenie turbokompressorov avtomobil`ny`x dizelej primeneniem usovershenstvovannogo remontnogo kompleksa podshipnikovogo uzla (Restoration of turbochargers of automobile diesels using an improved bearing assembly repair complex), Candidate’s thesis, Orenburg, OSU, 2012, 167 p.
- Kulakov A.T., Yakubovich I. A., Finochenko A. G. Remont i vosstanovlenie turbokompressorov TKR7N-1 dizelej KAMAZ (Repair and restoration of turbochargers TKR7N-1 of KAMAZ diesel engines), Magadan, North-Eastern State University, 2013, 94 p. ISBN 978-5-91260-097-5.
- Khannanov M. D., Alimgulov E`. R., Fardeev L. I., Kulikov A. S., Gumerov I. F., Gubajdullin R. R., Mukanov G. Zh., Dojkin A. A. Izvestiya MGTU MAMI, 2022, vol. 16, no. 4, pp. 291-301, doi 10.17816/2074-0530-108421.
- Yakubovich I. A., Kulakov A. T., Shafeev D. R. Vestnik Orenburgskogo gosudarstvennogo universiteta, 2014, no. 10(171), pp. 219-223.
- Kulakov A. T., Denisov A. S., Makushin A. A., Gaffarov A. G. Vestnik Orenburgskogo gosudarstvennogo universiteta, 2011, no. 10(129), pp. 238-241.
- Serrano J. R., Olmeda P., Tiseira A. J, García-Cuevas L. M., Lefebvre А. Theoretical and experimental study of mechanical losses in automotive turbochargers, Energy, 2013, vol. 55, pp. 888-898, doi 10.1016/j.energy.2013.04.042.
- Yakubovich I. A., Kulakov A. T. Avtotransportnoe predpriyatie, 2013, no. 3, pp. 45-48.
- Gaffarov G. G., Kalimullin R. F., Kovalenko S. Y., Kulakov A. T. Vestnik Yuzhno-Ural`skogo gosudarstvennogo universiteta. Seriya: Mashinostroenie, 2015, vol. 15, no. 3, pp. 18-27.
- Makushin A. A., Gaffarov A. G. Remont. Vosstanovlenie. Modernizaciy, 2011, no. 2, pp. 35-40.
- Galiev I. G., Kulakov A. T., Galimov A. R. Ucheny`e zapiski Kry`mskogo inzhenerno-pedagogicheskogo universiteta, 2021, no. 2(72), pp. 251-256, doi 10.34771/UZCEPU.2021.72.2.048.
- Galiev I. G., Kulakov A. T., Galimov A. R. Ucheny`e zapiski Kry`mskogo inzhenerno-pedagogicheskogo universiteta, 2021, no. 4(74), pp. 256-261, doi 10.34771/UZCEPU.2021.4.74.053.
- Kulakov A. T., Kalimullin R. F., Denisov A. S., Gafiyatullin A. A., Sherstnev N. A., Timersultanov T. S., Nuretdinov D. I., Galiev R. M., Penkov E. A. Patent RU 2796181 C11, 17.05.2023.
- Kulakov A. T., Gafiyatullin A. A., Snarsky S. V., Mukhametdinov E. M., Kulakov O. A. Malakhovetsky A. F. Patent RU 209061 U1, 31.01.2022.
Authors:
Aleksei N. Kotomchin – Candidate of Sciences (Technical), associate professor of the Department of «Transport and technological machines and complexes», Bendery Polytechnic Branch of PSU named after. T.G. Shevchenko, Bendery, Transnistria, aleshka81@list.ru, https://orcid.org/0000-0002-4750-5255
Evgenii Yu. Lyakhov – Candidate of Sciences (Technical), associate professor of the Department of «Transport and technological machines and complexes», Deputy Director for General Affairs, Bendery Polytechnic Branch of PSU named after. T.G. Shevchenko, Bendery, Transnistria, sami77752@gmail.com, https://orcid.org/0000-0001-6777-6899
Aleksandr V. Zorin – Doctor of Sciences (Technical), Professor, Head of the Department of Manufacturing and repair of vehicles and road-construction machines, MADI, Moscow, Russia, madi-dm@list.ru, http://orcid.org/0009-0006-8565-7707
Abstract
As a result of the performed analysis of defects in aggregates of cars and road construction machines, it was revealed that the most common defect leading to a loss of operability of the unit and equipment as a whole is the seating for the support bearings of the housing units. Therefore, the literature review of existing restoration methods has highlighted one of the promising ways to restore bearing seats – the application of polymer composite materials. The variety of applications of polymer composite materials allows you to select the necessary composition and modes of obtaining coatings with the necessary physical and mechanical properties. The existing technology for restoring bearing seats has made it possible to obtain coatings with high adhesive strength and hardness of polymer composite coatings. To improve the quality and productivity of the polymer composite materials application process, studies have been conducted that have shown that the use of an additional transition nozzle with a damping hole 1.6-2 times smaller than the recoverable surface of the hole will allow coatings with minimal roundness deviations with maximum application performance. To obtain the reliability of the research, mathematical processing of the results was also performed and regression equations for roundness and productivity were obtained, which solidified the results obtained.
Keywords: polymer composite materials, seating, housing, unit, roundness, performance
References
- Artemenko A. I. Pod"yomno-transportnye, stroitel'nye, dorozhnye, putevye, meliorativnye mashiny i robototekhnicheskie kompleksy, Sbornik dokladov konferencii, Moscow, MISI-MGSU, 2023, рр. 120-123.
- Tkachenko A. P., Pavlov A. P. Vestnik MADI, 2022, no. 4(71), рр. 56-62.
- Kotomchin A. N., Zorin V.A. Materialy VΙΙ mezhdunarodnoj nauchno-prakticheskoj konferencii “Nauchno-tekhnicheskie aspekty razvitiya avtotransportnogo kompleksa 2021”, Gorlovka, Avtomobil'no-dorozhnyj institut doneckogo nacional'nogo tekhnicheskogo universiteta, 2021, рр. 72-75.
- Lyahov E. Yu. Pod"emno-transportnye, stroitel'nye, dorozhnye, putevye, meliorativnye mashiny i robototekhnicheskie kompleksy, Sbornik statej, Moscow, Rossijskij gosudarstvennyj agrarnyj universitet - MSHA im. K.A. Timiryazeva, 2022, рр. 537-543.
- Sinel'nikov A. F. Gruzovik, 2010, no. 4, рр. 27-37.
- Baurova N.I., Zorin V.A. Primenenie polimernyh kompozicionnyh materialov pri proizvodstve i remonte mashin (Application of polymer composite materials in the production and repair of machines), Moscow, MADI, 2016, 264 p.
- Gadzhiev A. A., Kononenko A. S., Orlov A. M. Vestnik Federal'nogo gosudarstvennogo obrazovatel'nogo uchrezhdeniya vysshego professional'nogo obrazovaniya "Moskovskij gosudarstvennyj agroinzhenernyj universitet imeni V.P. Goryachkina, 2009, no. 2(33), pp. 70-73.
- Puchin E. A., Novikov V. S., Ochkovskij N. A., Korneev V. M., Kravchenko I. N., Kononenko A. S., Gadzhiev A. A., Chepurin A. V. Tekhnologiya remonta mashin (Machine repair technology), Moscow, Kolos, 2007, 488 p. ISBN 978-5-9532-0456-9
- Puchin E.A., Novikov V.S., Ochkovskij N.A., Bogachev B.A., Gadzhiev A.A., Kravchenko I.N., Mazaev Y.V., Chvanov K.G., Slivov A.F., Korneev V.M., Mikhailyuk-Shugaev A.A., Kononenko A.S., Chepurin A.V., Kartsev S.V., Orlov A.M., Burak P.I., Petrovsky D.I., Bugaev A.V. ., Gavrilov A.A., Petrovskaya E.A. Praktikum po remontu mashin (Workshop on car repair), Moscow, Kolos, 2009, 327 p. ISBN 978-5-9532-0539-9.
- Gadzhiev A. A., Chudina O.V. Uprochnyayushchie tekhnologii i pokrytiya, 2007, no. 9(33), pp. 48-52.
- Kononenko A. S. Tekhnologicheskie processy renovacii mashin i oborudovaniya polimernymi materialami (Technological processes for the renovation of machinery and equipment using polymer materials), Moscpw, MGTU im. N. E. Baumana, 2022, 48 p. ISBN 978-5-7038-5869-1.
- Kononenko A. S., Solovieva A.A. Remont. Vosstanovlenie. Modernizaciya, 2020, no. 3, pp. 20-23, doi 10.31044/1684-2561-2020-0-3-20-23.
- Lyahov E. Yu., Zorin V. A. Klei. Germetiki. Tekhnologii, 2022, no. 6. pp. 34-38.
- Li R. I., Psarev D. N. Klei. Germetiki. Tekhnologii, 2015, no. 2. pp. 34-38.
- Gadzhiev A. A., Kononenko A. S., Orlov A. M. Vestnik Federal'nogo gosudarstvennogo obrazovatel'nogo uchrezhdeniya vysshego professional'nogo obrazovaniya "Moskovskij gosudarstvennyj agroinzhenernyj universitet imeni V.P. Goryachkina", 2009, no. 2(33), pp. 70-73.
- Li R. I., Psarev D. N., Mironenko A. V., Kiba M. R. A promising polymer material for repairing body parts of machines, Polymer Science, Series D, 2017, vol. 10, no. 4, pp. 318-321.
- Li R. I., Psarev D. N., Mironenko A. V., Kiba M. R. Nauchnaya mysl', 2017, no. 3, pp. 186-188.
- Nesterov S. A., Kuznetsov I.S. Setevoj nauchnyj zhurnal OrelGAU, 2016, no. 1(6), pp. 158-161.
INTELLIGENT TRANSPORT SYSTEMS
Authors:
Aleksandr S. Bugaev – Doctor of Sciences (Physical and Mathematical), professor, academician of the Russian Academy of Sciences, chief researcher, Kotelnikov IRE RAS (Fryazino Branch), Fryazino, Russia, bugaev@cplire.ru
Sergei V. Gerus – Doctor of Sciences (Physical and Mathematical), leading researcher, Kotelnikov IRE RAS (Fryazino Branch), Fryazino, Russia, svg318@ire216.msk.su, https://orcid.org/0000-0002-1611-6484
Valeri V. Dementienko – Doctor of Sciences (Technical), professor, Senior researcher, Kotelnikov IRE RAS, Moscow, Russia, v.dementienko@neurocom.ru, https://orcid.org/0000-0003-0488-7334
Abstract
The article presents calculations of the test volumes of vehicles equipped with driver sleep monitoring systems. Two types of tests are considered. The first type of tests involved two groups of vehicles of equal size one equipped with the monitoring system and the other without it. It was assumed that crashes in these groups could occur due to both driver drowsiness and other causes. The second type of tests differs by the fact that it provided an opportunity to directly register the fact of an accident due to the driver's loss of wakefulness. The required number of vehicles equipped with driver monitoring systems and the duration of the tests to obtain results with a given confidence level, were determined.
Keywords: safety, traffic accidents, vehicle testing, driver monitoring system, sleepy state
References
- Horne J.A., Reyner L.A. Sleep related vehicle accidents, BMJ, 1995, vol. 310(6979), pp. 565-567, doi 10.1136/bmj.310.6979.565.
- Gislason T., Tomasson K., Reynisdottir H., Bjornsson J.K., Kristbjarnar-son H. Medical risk factors amongst drivers in single-car accidents, Journal of Internal Medicine, 1997, vol. 241(3), pp. 213-219, doi 10.1046/j.1365-2796.1997.103120000.x.
- Arakawa T. Trends and Future Prospects of the Drowsiness Detection and Estimation Technology, Sensors, 2021, vol. 21(23), art. no. 7921, doi 10.3390/s21237921.
- You F., Gong Y., Tu H., Liang J., Wang H. A Fatigue Driving Detection Algorithm Based on Facial Motion Information Entropy, Journal of Advanced Transportation, 2020, vol. 2020, pp. 1–17, doi 10.1155/2020/8851485.
- Moujahid A., Dornaika F., Arganda-Carreras I., Reta J. Efficient and compact face descriptor for driver drowsiness detection, Expert Systems with Applications, 2021, vol. 168, art. no. 114334, doi 10.1016/j.eswa.2020.114334.
- Wijnands J.S., Thompson J., Nice K.A., Aschwanden G.D., Stevenson M. Real-time monitoring of driver drowsiness on mobile platforms using 3D neural networks, Neural Computing and Applications, 2020, vol. 32, pp. 9731-9743.
- Gwak J., Hirao A., Shino M. An investigation of early detection of driver drowsiness using ensemble machine learning based on hybrid sensing, Applied Sciences, 2020, vol. 10(8), art. no. 2890, doi 10.3390/app10082890.
- Doudou M., Bouabdallah A., Berge-Cherfaoui V. Driver Drowsiness Measurement Technologies: Current Research, Market Solutions, and Challenges, International Journal of Intelligent Transportation Systems Research, 2020, vol. 18, pp. 297-319, doi 10.1007/s13177-019-00199-w.
- Albadawi Ya., Takruri M., Awad M. A Review of Recent Developments in Driver Drowsiness Detection Systems, Sensors, 2022, vol. 22(5), art. no. 2069, doi 10.3390/s22052069.
- Gerus S.V., Dementiyenko V.V. Transport: nauka, tekhnika, upravleniye. Nauchnyy informatsionnyy sbornik. 2019, no. 9, pp. 72-75, doi 10.36535/0236-1914-2019-09-13.
- Dementiyenko V.V., Dorokhov V.B., Gerus S.V., Markov A.G., Shakhnarovich V.M. ZHTF, 2007, vol. 77, no. 6, pp. 103-108.
- Dementiyenko V.V., Gerus S.V. Nelineynyy mir, 2010, vol. 8, no. 4, pp. 255-263.
- Gmurman V.E. Teoriya veroyatnostey i matematicheskaya statistika (Probability theory and mathematical statistics), 10 ed., Moscow, Vysshay shkola, 2004, 479 p. ISBN 5-06-004214-6.
- Venttsel' Ye.S. Teoriya veroyatnostey (Probability theory), 10 ed., Moscow, Vysshay shkola, 2006, 575 p. ISBN 5-06-005688-0.
- Barlou R., Belyaev Yu.K., Bogaty`rev V.A., Bolotin V.V., Gadasin V.A., Gaziev E`.G., Davtyan M.D., Dzirkal E`.V., Ivlev V.V., Kalashnikov V.V., Kartashov G.D., Kashtanov V.A., Klimov G.P., Kovalenko I.N., Kozlov B.A., Konenkov Yu.K., Korolyuk V.S., Kuzneczov N.Yu., Litvak E.I., Malashenko Yu.E., Matveev V.F., Mizin I.A., Pavlov I.V., Pashkovskij G.S., Proshan F., Rajnshke K., Rubal`skij G.B., Rudenko Yu.N., Solov`ev A.D., Stavrovskij E.R.1, Suanes K.A., Sudakov R.S., Suxarev M.G., Teskin O.I., Topol`skij M.V., Ushakov I.A., Franken P., Fishbejn F.I., Cherkesov G.N., Chirkov V.P., Shtreller A., Shubinskij I.B., Shura-Bura A.E. Nadezhnost' tekhnicheskikh sistem. Spravochnik (Reliability of technical systems. Reference book), Moscow, Radio i svyaz', 1985, 608 p.
- Druzhinin G.V. Nadezhnost' avtomatizirovannykh system (Reliability of automated systems), 3 ed., Moscow, Energiya, 1977, 536 p.
LOGISTICS TRANSPORT SYSTEMS
Authors:
Olesya A. Budnik – postgraduate of the department of Legal and customs management of transport MADI, Moscow, Russia, budnik.leska@yandex.ru
Dmitry B. Efimenko – Doctor of Sciences (Technical), Professor, Head of the Department of Legal and customs management of transport MADI, Moscow, Russia, ed2002@mail.ru, https://orcid.org/0009-0003-9772-3343
Akim T. Makiev – postgraduate of the department of Legal and customs management of transport MADI, Moscow, Russia, ak.mackiev@yandex.ru
Abstract
Due to the increase in tariffs for transport services, the extension of transportation time, the closure of borders, the need for sanitary checks and compliance with quarantine restrictions, a need has arisen in the search for new, innovative solutions in the administration of cross-border transport corridors of the Eurasian Economic Union (EAEU). This is especially true for checkpoints. These factors, as well as the factor of the large length of transit routes in the Russian Federation and many different natural and artificial conditions (climatic, geographical, infrastructural), determine the need to optimize the transport and logistics processes of EAEU. There is a need to search and develop innovative solutions, primarily for the development of cross-border road transport of goods, by increasing the efficiency of the use of electronic documents when placing goods and vehicles under the customs procedure of customs transit in the Russian Federation.
Keywords: international transportation, transport logistics, organization of transport and logistics processes, information technology, digital transformation
References
- Gorishnyaya A. A., Chmut G. A. Vestnik universiteta, 2021, no. 8, pp. 34-40, doi 10.26425/1816-4277-2021-8-34-40.
- Zhankaziev S. V., Nguyen H. M., Vzdykhalkin V. N., Karpov P.V. Nauka i tekhnika v dorojnoy otrasli, 2019, no. 2(88), pp. 2-4.
- Shadrin S. S., Ivanov A. M., Nevzorov D. V. Estestvennie i technicheskie nauki, 2015, no. 6(84), pp. 309-311.
- Merenkov A. O., Timasheva M. S., Zorova A. V. Vestnik transporta, 2020, no. 4, pp. 41-44.
- Komarova E. V., Vlasov A. V. Ucheniy zapiski Rossiskoy Akademiy predprinimatelstva, 2019, vol. 18, no. 3, pp. 200-207.
- Senin I. S., Konovalova T. V., Nadiryan S. L. Gumanitarniy, sochialno-iconomicheskie i obchestvenniy nauki nauki, 2023, no. 1, pp. 198-200, doi 10.23672/SAE.2023.20.17.001.
- Merenkov A. O. Transportnoe delo Rossiy, 2023, no. 1, pp. 62-64, doi 10.52375/20728689_2023_1_62.
- Golubchik A. M. Logistica segodnya, 2021, no. 4, pp. 258-264, doi 10.36627/2500-1302-2021-4-4-258-264.
- Kholopov K. V., Sokolova O. V. Rossisky vnechneekomichesky vestnik, 2018, no. 8, pp. 84-96.
- Chupin A.L., Chupina G. S. Zhurnal issledovaniy po upravleniyu, 2022, vol. 8, no. 1, pp. 38-45.
- Ozherel'yev M. U., Vlasov V. M., Efimenko D. B. Vestnik MADI(GTU), 2005, no. 4, pp.110-115.